DENIS V. KHOMITSKY

University	National Research Lobachevsky State University of Nizhny
	Novgorod
Level of English proficiency	Advanced
Educational program and field of	1.3. Physical sciences
the educational program for which	1.3.8. Condensed Matter Physics
the applicant will be accepted	·
List of research projects of the	1. State assignment of the Ministry of Science and Higher Education
potential supervisor	of the Russian Federation "Nanostructured semiconductors, Dirac
(participation/leadership)	materials and crystals of biologically active substances for photonics,
	spintronics, quantum computing and biomedicine", project No. 0729-2020-0058 (2020-2022) (participant)
	2. State assignment of the Ministry of Science and Higher Education
	of the Russian Federation "Quantum structures for quantum
	technologies", project No. FSWR-2023-0035 (2023-2025)
	(participant)
List of the topics offered for the	1) Spin dynamics in quantum dots in nonstationary electric field;
prospective scientific research	2) Quantum dots in topological insulators formed by magnetic
	barriers;
	3) Quantum states and spin polarization of corner states in two-
	dimensional topological insulators
	4) Spin and optical properties of heterostructures with quantum wells
	and magnetic atom layers.
в тору ических и	Condensed Matter Physics
Іение Вла	Supervisor's research interests
K.dM.	Spintronics, topological insulators, spin, optical, magnetic and
онально Нижегородек Любаченского	transport properties of nanostructures.
Appendix Street	Research highlights
THE THE	Theoretical modeling of quantum states, spin textures, optical and
	transport properties of semiconductor nanostructures such as
	quantum wells, nanowires and quantum dots with spin-orbit
	coupling.
	Tunneling and external field driving effects on the spin evolution.
Research supervisor:	Quantum dot formation in topological insulators by magnetic barriers.
Research supervisor.	Modeling of edge-localized states in two-dimensional topological
Denis V. Khomitsky	insulators
	Regular and irregular dynamics of tunneling and spin in
Doctor of Science/PhD	nonstationary fields applied to nanostructures.
(Lobachevsky State University of	Supervisor's specific requirements
Nizhny Novgorod)	Well-developed skills in basic methods of quantum mechanics;
	Well-developed skills in solid state physics;
Professor of the Department of	Good skills in programming of problems in quantum mechanics,
Theoretical Physics, Faculty of	mathematical physics and linear algebra.
Physics	Supervisor's main publications
	17 papers in WoS, Scopus and RSCI during 2020-2025, including:
	[1] D.V. Khomitsky, M.V. Bastrakova, D.S. Pashin. Spin flip
	locking by the tunneling and relaxation in a driven double
	quantum dot with spin-orbit coupling // Physical Review B. –
	2025 – V.111. – P.085427.
1	
	[2] D.V. Khomitsky, M.V. Bastrakova, V.O. Munyaev, N.A.

evolution at subharmonics of electric dipole spin resonance enhanced by four-level Landau-Zener-Stückelberg-Majorana interference // Physical Review B. – 2023 – V.108. – P.205404. [3] D.V. Khomitsky and S.A. Studenikin, Single-spin Landau-Zener-Stückelberg-Majorana interferometry of Zeeman-split states with strong spin-orbit interaction in a double quantum dot // Physical Review B. – 2022. – V.106. – P.195414. [4] D.V. Khomitsky, A.A. Konakov and E.A. Lavrukhina. Formation of bound states from the edge states of 2D topological insulator by macroscopic magnetic barriers // Journal of Physics: Condensed Matter. – 2022. – V.34. – P.405302. [5] M.V. Dorokhin, M.V. Ved, P.B. Demina, D.V. Khomitsky, K.S. Kabaev, M.A.G. Balanta, F. Ikawa, B.N. Zvonkov, and N.V.
[5] M.V. Dorokhin, M.V. Ved, P.B. Demina, D.V. Khomitsky, K.S. Kabaev, M.A.G. Balanta, F. Ikawa, B.N. Zvonkov, and N.V. Dikareva, Role of resident electrons in the manifestation of a
spin polarization memory effect in Mn delta-doped GaAs heterostructures // Physical Review B. – 2021. – V.104. – P.125309.
Results of intellectual activity -