ALEXANDER V. NYUCHEV

University	Lobachevsky state university of Nizhny Novgorod
Level of English proficiency	C1
Educational program and field of	1.4. Chemical Sciences
the educational program for	1.4.3. Organic chemistry
which the applicant will be	1.4.5. Organic chemistry
accepted	
List of research projects of the	1. Ministry for Science of Russia, FSWR-2024-0002
potential supervisor	"Development of effective methods for obtaining biocompatible
(participation/leadership)	compounds with physiological activity, study of their
	physicochemical and biological properties", 2024–2026, grant
	leader.
	2. Russian Scientific Foundation 21-73-10230, "Cascade
	prodrug for photodynamic and targeted therapy of tumor
	diseases", 2021–2024, grant leader.
	3. Ministry for Science of Russia, FSWR-2021-014
	"Synthesis of biologically active compounds with antitumor,
	antiinflammatory, antifibrous and antiviral properties, study of
	their physical-chemical and biological properties", 2021–2023,
	grant leader.
	4. Russian Foundation for Basic Research, "Elaboration of
	targeted photoactivated conjugates based on natural and synthetic
	porphyrins for combined antitumor therapy", 2018–2020, grant
List of the topics offered for the	leader.
List of the topics offered for the prospective scientific research	Synthetic organic chemistry in continuous-flow
prospective scientific research	Development of green organic synthesis methodology in
	continuous-flow
	Application of continuous-flow technology for industrial
	application
	Gas/liquid reactions in continuous-flow
	Photoredox catalysis in continuous-flow
	Green synthetic photochemistry
	 Development of methodology for synthesis fluorine-
	containing compounds
	Chemistry and Materials Sciences
	Supervisor's research interests
	Synthetic organic chemistry
	Synthetic photochemistry
	Flow chemistry
(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	Research highlights
- such	Actual research field in organic chemistry
	Supervisor's specific requirements
	• Knowledge of organic chemistry
Research supervisor:	• Knowledge of analytical methods for organic chemistry (NMR,
Alexander V. Nyuchev	IR, UV and mass spectrometry, methods of gas, liquid and
_	preparative column chromatography) • Good command of English
PhD (Lobachevsky state	Last 5 years:
university of Nizhny Novgorod)	23 papers, all in <i>Web of Science, Scopus, RSCI</i>
	25 papers, air in 11 to of science, scopus, 160cr

ResearcherID: **B-8686-2013** Scopus AuthorID: **41661885100** ORCID: **0000-0002-0460-0543**

- 1. E.N. Boronin, M.M. Svetlakova, I.I. Vorobyov, Y.B. Malysheva, Y.V. Polushtaytsev, S.N. Mensov, A.V. Vorotyntsev, A.Yu. Fedorov, T. Noël, <u>A.V. Nyuchev</u>. Photochemical organocatalytic heteroarylation of anilines and secondary alicyclic amines in continuous-flow. *Reaction Chemistry & Engineering* **2024**, *9*, 1877–1882.
- 2. T. Wan, L. Capaldo, G. Laudadio, <u>A.V. Nyuchev</u>, J.A. Rincón, P. García-Losada, C. Mateos, M.O. Frederick, M. Nuño, T. Noël. Decatungstate-mediated C(sp3)–H Heteroarylation via Radical-Polar Crossover in Batch and Flow. *Angewandte Chemie International Edition*, **2021**, *60 (33)*, 17893–17897.
- 3. <u>A.V. Nyuchev</u>, T. Wan, B. Cendón, C. Sambiagio, J.J.C. Struijs, M. Ho, M. Gulías, Y. Wang, T. Noël. Photocatalytic trifluoromethoxylation of arenes and heteroarenes in continuous-flow. *Beilstein Journal of Organic Chemistry*, **2020**, *16*, 1305–1312.
- 4. S. Govaerts, <u>A. Nyuchev</u>, T. Noel. Pushing the boundaries of C-H bond functionalization chemistry using flow technology. *Journal of Flow Chemistry*, **2020**, *10*, 1, 13–71.
- 5. N.S. Kuzmina, V.F. Otvagin, A.A. Maleev, M.A. Urazaeva, <u>A.V. Nyuchev</u>, S.K. Ignatov, A.E. Gavryushin, A.Yu. Fedorov. Development of novel porphyrin/combretastatin A-4 conjugates for bimodal chemo and photodynamic therapy: synthesis, photophysical and TDDFT computational studies. *Journal of Photochemistry and Photobiology A: Chemistry*, **2022**, *433*, 114138.