PERMIN DMITRY ALEKSEEVICH

University	Lobachevsky State University of Nizhni Novgorod
Level of English proficiency	technical
Educational program and field of	
the educational program for	1.4.1 Inorganic chemistry
which the applicant will be	
accepted	
List of research projects of the potential supervisor (participation/leadership)	1. Grant RSF 22-73-10084 Laser nanoceramics based on MgO-FE2O3 composite materials doped with Tm, Ho and Er ions (2022-2025) - Head of the project
(participation/readership)	2. RSF Grant 19-73-10127 "Composite IR transparent materials based on magnesium oxides and rare earth elements" (2019-2021) – Head of the project
	3. RSF grant 18-13-00355 "Synthesis of new magneto-optical media of near and medium IR wavelength ranges based on rare earth element oxides" (2018-2020) – Participant
	4. Research within the framework of the "Priority 2030" program-463-99_2021-2023 New laser nanoceramic materials
	based on fluorapatite and rare earth elements – Head of the project
	5. RFBR grant 16-33-60153 mol_a_dk "New laser ceramics based on disordered oxides of rare earth metals – scandium, yttrium and lutetium" (2016-2018) - Head of the project
	6. RFBR grant 14-03-31940 mol a "Self-propagating high-
	temperature synthesis of nanodispersed scandium oxide powders for optical ceramics" (2014-2015) - Head of the project
List of the topics offered for the prospective scientific research	IR-transparent ceramics based on magnesium oxide and oxides of rare earth elements
prospective scientific research	Production of laser ceramics based on yttrium oxide by hot
	pressing
	Production of optical ceramics based on fluorapatite
	Production of hydroxyapatite nanopowders
	Chemistry and Materials Sciences
	Supervisor's research interests
	Approaches to the synthesis of highly dispersed powders of rare
	earth element oxides that form the basis of ceramic laser materials
	in the near-infrared range, as well as the development of
	approaches to obtaining new IR materials based on composite and anisotropic ceramics.
	Research highlight
	The work is carried out using a complex of technological and
	research equipment for the successful completion of tasks for the synthesis of nanopowders (muffle furnaces, mills of various types,
	spray drying, etc.), compaction (uniaxial and isostatic presses),
	sintering (furnaces of various types – atmospheric, vacuum, hot
	pressing, hot isostatic pressing), processing (grinding and
Research supervisor:	polishing machines), interference coating installations, general laboratory equipment.
Dmitry A. Permin	The research is carried out in a close cooperation with other
Candidate of Science (Chemistry)	departments of UNN State University (Faculty of Radiophysics, NIFTI UNN State University) and academic institutions, primarily ICHPS RAS.

(Russia)	Supervisor's specific requirements
(Lobachevsky State University of Nizhny Novgorod)	- knowledge of the basics of inorganic chemistry and methods of
	inorganic synthesis
	- good command of English and Russian
	Supervisor's main publications
	Over the past 5 years, 50 publications have been published in
	journals indexed by Web of Science, Scopus, RSCI, including
	1. Permin D. A. et al. Effect of SHS powder processing on
	structure formation and optical transmittance of MgO-Y2O3
	composite ceramic // Ceramics International. 2024. Vol. 50. No.
	16. pp. 28947-28954.
	2. Permin D. A. et al. Dy2O3–MgO composite ceramics:
	Fabrication and properties // Ceramics International. 2024. Vol.
	50. No. 7. pp. 10940-10946.
	3. Nazmutdinov M. et al. Fabrication and study of the
	strontium fluoroarsenate Sr5(AsO4)3F (SFAs) transparent
	ceramics // Open Ceramics. 2024. Vol. 17. p. 100543.
	4. Eremeev K. et al. Spectroscopy of thulium ions in solid-
	solution sesquioxide laser ceramics: Inhomogeneous spectral line
	broadening, crystal-field engineering and C3i sites // Optical
	Materials. 2024. Vol. 148. p. 114791.
	5. Permin D. A. et al. Erbium-Doped Lu2O3-MgO and
	Sc2O3-MgO IR-Transparent Composite Ceramics //
	Nanomaterials. 2023. Vol. 13. No. 10. p. 1620.
	Results of intellectual activity
	-