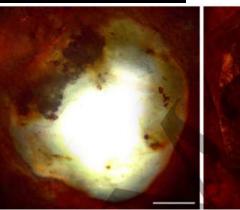

Research (What is it about?)	Vessel growth and bone regeneration on controlled roughness implant	
UNN authors	Kuznetsova D., Rodimova S.	
We find (The	It is shown that an increase in roughness of biocompatible polymer	
result)	implant results in better osteogenic differentiation of stem cells	
Abstract	It is shown that an increase in roughness of biocompatible polyme	

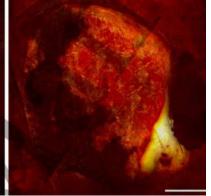
Representative articles 2017-2018, quartiles	 Kuznetsova D., Ageykin A., Koroleva A., Deiwick A., Shpichka A., Solovieva A., Kostjuk S., Meleshina A., Rodimova S., Akovanceva A., Butnaru D., Frolova A., Zagaynova E., Chichkov B., Bagratashvili V., Timashev P. Surface micromorphology of cross-linked tetrafunctional polylactide scaffolds inducing vessel growth and bone formation. Biofabrication. 9(2):025009 (2017). 	
Q-index (Qi) for the result		4
	high blue	

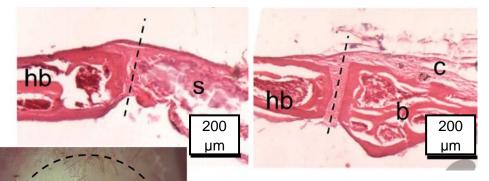
In collaboration	Privolzhsky Research Medical University, Nizhny Novgorod 603005,
	Russia
	Sechenov First Moscow State Medical University, Moscow 119991,
	Russia
	Laser Center Hannover Nord, Hannover 30419, Germany
	Semenov Institute of Chemical Physics RAS, Moscow 119991, Russia
	Belarusian State University, Minsk 220030, Belarus
	Federal Scientific Research Centre "Crystallography and Photonics"
	RAS, Troitsk 108840, Moscow Region, Russia
	Penza State University, Penza 440026, Russia

Dendritic (stitched) *ptotoactive 3D polymer* for implant manufacturing.

50 µm


<u>General scanning electron</u> and detailed atomic force <u>microscopy views of the</u> <u>scaffold ring surfaces</u> (surface roughness).


colour.


Bone regeneration on the scaffold after 5 weeks and 10 weeks post-implantation. The red area inside the formed defect indicates the zone of mineralization.

m

50 µm

Bone regeneration after 5 weeks and 10 weeks postimplantation: \mathbf{hb} – host bone tissue, \mathbf{b} – newly formed bone, \mathbf{c} – coarse-fibered connective tissue, \mathbf{s} – scaffold, \mathbf{m} – mineralization. The dashed line indicates the area of the formed defect.