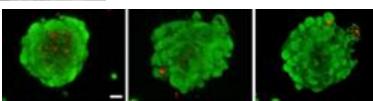
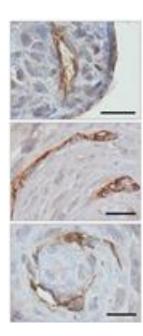
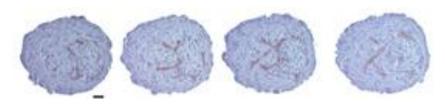

Research (What is it about?)	Prevascularized building blocks for 3D bioprinting
UNN authors	Krysko D.
We find (The result)	Uniform vascularized spheroids for bioprinting were formed that can be incorporated into a printed construct
Abstract	Biofabrication can be defined as the production of complex living and non-living biological products from raw materials such as living cells, molecules, extracellular matrices, and biomaterials. In medicine three dimensional (3D) <i>bioprinting</i> is the utilization of 3D printing-like techniques to combine cells, growth factors, and biomaterials to fabricate the desired tissue or organ. But overcoming the problem of <i>vascularization</i> (it is the process of abnormal or excessive formation of blood vessels) remains the main challenge in the field of tissue engineering. As three-dimensional (3D) bioprinting is the rising technique for the fabrication of large tissue constructs, small prevascularized building blocks were generated that can be incorporated throughout a printed construct, answering the need for a microvasculature within the small micron range (<10 μm). Uniform <i>spheroids</i> with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non- adhesive <i>agarose microwell system</i> . Since monoculture spheroids of endothelial cells were unable to remain stable, coculture spheroids combining endothelial cells with fibroblasts and/or adipose tissue derived <i>mesenchymal stem cells</i> (ADSC) as supporting cells, were created. It is shown that when applying the favorable coculture ratio, viable spheroids were obtained and endothelial cells spontaneously formed a <i>capillary-like network</i> and lumina. Especially the presence of ADSC led to a higher vascularization and extracellular matrix production of the microtissue. Spheroids were able to assemble at random in suspension and in a hydrogel, creating a <i>macrotissue</i> . Combining the advantage of this natural capacity of microtissues to self- assemble and the controlled organization by bioprinting technologies, these prevascularized spheroids can be useful as building blocks for the engineering of large vascularized 3D tissues.

Representative articles 2017-2018, quartiles	1. De Moor L., Merovci I., Baetens S., Verstraeten J., Kowalska P., Krysko D., De Vos W., Declercq H. High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication. 10 (3):035009 (2018).	Q1
Q-index (Qi) for the result		4
	high blue	
In collaboration	Ghent University, Ghent, Belgium	

In collaboration	Ghent University, Ghent, Belgium
	University of Antwerp, Antwerp, Belgium
	University of Pristina, Pristina, Kosovo






Self-assembly of monoculture spheroids after 1, 4 and 7 days of culture, scale bar = $200 \,\mu$ m.

Overall morphology of spheroids after 10 days of culture, scale bar = $20 \ \mu m$.

Vascularization within spheroids, scale bar = $20 \ \mu m$.

Four sequential sections (5 μ m each) of two large spheroids, scale bar = 20 μ m.