Research (What	Radionuclide-toxin nanocomplex for synergistic theranostics
is it about?)	of cancer
UNN authors	Guryev E., Shilyagina N., Gudkov S., Balalaeva I., Volovetskiy A.,
	Vodeneev V., Zvyagin A., Deyev S.
We find (The	The multifunctional nanocomplex coupled to beta-emitting
result)	radionuclide and proteinic toxin has been created which provides
	the synergistic effect in cancer theranostics
Abstract	Targeted therapy makes use of high-affinity molecules as carriers of
	therapeutic agents, such as radioactive isotopes or toxins, to tumor cells.
	Targeted therapy drugs are often administered intravenously, eventually
	homing to target molecules on the surface of tumor cells. In this case,
	radioactive isotope or toxin molecules attached to high-affinity carrier
	molecules directly affect tumor cells. An emerging new-generation
	approach in biomedicine, called <i>theranostics</i> , relies on the detection of a
	complex consisting of a carrier molecule and a toxic agent. The
	theranostics concept is realized by employing drugs with dual
	therapeutics and diagnostics functionality.
	we report combined therapy using upconversion nanoparticles (UCNP)
	coupled to two therapeutic agents: beta-emitting radionuclide yttrium-90 $\binom{90}{2}$ for stionally, substituting attrium in LICND, and a fragment of the
	(Y) fractionally substituting yttrium in UCNP, and a fragment of the
	with a targeting designed enlyrin repeat protein (DAPDin) specific to
	HEP2 recentors. The resultant hybrid complex <i>UCNP B T</i> was tested
	using human breast adenocarcinoma cells and immunodeficient mice
	bearing venograft tumors. The photophysical properties of the drug
	enabled imaging of the UCNP-R-T distribution in cells and animals
	Specific binding and uptake of UCNP complexes in cancer cells was
	observed, with separate 90 Y- and exotoxin-induced cytotoxic effects
	When both therapeutic agents were combined into UCNP-R-T. the
	synergetic effect increased markedly, ~ 2200 -fold. The combined
	therapy with UCNP-R-T was demonstrated <i>in vivo</i> .
L	

Representative 1. E.L. Guryev, N.O. Volodina, N.Y. Shi	lyagina, S.V.	Q1
articles Gudkov, I.V. Balalaeva, A.B. Volov	vetskiy, A.V.	
2017-2018, Lyubeshkin, A.V. Sen, S.A. Ermilov, V. A. V.	odeneev, R.V.	
quartiles Petrov, A.V. Zvyagin, Z.I. Alferov, Radioactive (⁹⁰ Y) upconversion nanoparticle with recombinant targeted toxin for nanotheranostics of cancer. Proc. Nat. Aca 115 (39), 9690, 9695 (2018)	S.M. Deyev. es conjugated synergistic ad. Sci. USA.	
113 (37). 7070-7073 (2010).		Л
Q-index (Qi)	for the result	4

high blue

In collaboration	Moscow Regional Research and Clinical Institute (MONIKI), Moscow
	129110, Russia
	Prokhorov General Physics Institute RAS, Moscow119991, Russia
	Sechenov University, Moscow 119991, Russia
	Center of Crystallography and Photonics RAS, Moscow119333, Russia
	Scientific and Technical Center "Amplitude", Zelenograd 124460,
	Russia
	Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
	Macquarie University, Sydney NSW 2109, Australia
	St. Petersburg Academic University, St. Petersburg 194021, Russia

