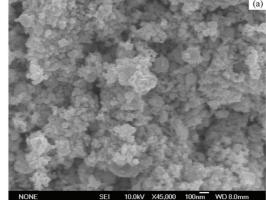
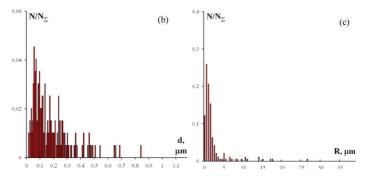

Research (What is	Spark plasma sintering of tungsten carbide nanopowders
it about?)	
UNN authors	Chuvil'deev V.N., Nokhrin A.V., Boldin M.S., Sakharov N.V., Blagoveshchenskiy
We find (The	
result)	high hardness (up to 31-34 GPa) and improved fracture toughness ($4.3-5.2$ MPa m ^{1/2}) were obtained using the Spark Plasma Sintering technology
Abstract	<i>Yu.V., Lantsev E.A., Popov A.A.</i> Samples of high-density <i>nanostructured</i> tungsten carbide characterized by high hardness (up to 31-34 GPa) and improved fracture toughness (4.3-5.2

Representative articles 2016-2017, quartiles	 Chuvil'deev V.N., Blagoveshchenskiy Yu.V., Nokhrin A.V., Boldin M.S., Sakharov N.V., Isaeva N.V., Shotin S.V., Belkin O.A., Popov A.A., Smirnova E.S., Lantsev E.A. Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. J. Alloys and Compounds. 708, 547- UC 1007. 	Q1, Q1, Q2
	561 (2017).	3.67
	Q-index (Qi) of the result	


_


In collaboration

Abnormal grain growth in tungsten carbide...

and the microphotographs of tungsten carbide nanopowder obtained using SPS. Scanning electron microscopy.

Particle size distribution histogram (b) and conglomerate size distribution histogram (c) of tungsten carbide nanopowder. N - number of particles (conglomerates) of R size, N_{Σ} - total number of scaled particles (conglomerates).