
Research (What is	Organo-inorganic copolymers with high catalytic activity		
it about?)			
UNN authors	Smirnova L.A., Salomatina E.V.		
We find (The	The nanocomposite copolymers of <i>poly(titanium oxide)</i> in an organic matrix		
result)	of poly(hydroxyethyl methacrylate) doped by the Au nanoparticles were		
	synthesized. The synthesized materials have high photocatalytic activity		
	under UV irradiation.		
Abstract	The interest to the TiO ₂ -based materials appeared when it was discovered the		
	phenomenon of water decomposition on the TiO ₂ -made anode under the UV-		
	irradiation. The photocatalytic peculiarities of TiO ₂ are the result of the reversible		
	single-electron transition of $Ti^{4+}+e^- \rightarrow Ti^{3+}$. In this case the charge carriers - holes		
	and electrons-are formed on the material surface due to absorption of UV-		
	irradiation with the wavelength corresponding to the TiO2 band gap. But this band		
	gap is wide (3.2 eV) that restricts the wavelength range of the charge carriers		
	generation by the UV region only. The recombination rate of charge carriers is high		
	so the quantum yield of the transition to Ti_{3+} is only~12–17%.		
	One can solve this problem by doping Au nanoparticles which have high absorption		
	in the visible region (510-550 nm) due to plasmonic resonance (collective		
	excitations of electrons on the surface of the nanoparticles). The excited electrons		
	on the surface of Au nanoparticles are transferred to the conducting band of TiO ₂ .		
	In order to increase the catalytic activity of TiO2 it is necessary to produce the		
	highly dispersed material. The way to do that is the formation of the polymeric		
	composites containing TiO ₂ as nanoparticles.		
	We describe the formation method of the optically transparent composition		
	materials containing highly dispersed poly(titanium oxide) doped with Au		
	nanoparticles in an organic polymer matrix in a one-pot reaction. The Au		
	nanoparticles are formed by the UV-irradiation the polymeric matrix containing		
	HAuCl ₄ .		
	The photocatalytic properties of poly(titanium oxide) doped with Au nanoparticles		
	in the organic matrix of poly(hydroxyethyl methacrylate) were tested in the well		
	investigated reaction of methylene orange (<i>MO</i>) decomposition under the broad		
	spectrum UV-irradiation (high pressure mercury arc lamp). The photocatalytic		
	activity of nanocomposite has been found twice as much compared to existing		
	photocatalysts. New polymeric composite is a prospective material for the		
	development of high-effective membrane-type photocatalysts.		

Organomet. Polym. Mater. 26(6), 1280-1291 (2016).	Representative articles 2016-2017, quartiles	 Salomatina E.V., Loginova A.S., Ignatov S.K., Drozdov M.N., Knyazev A.V., Spirina I.V., Smirnova L.A. Structure and catalytic activity of organo-inorganic copolymers containing poly(titanium oxide) and nanoparticles of Au. J. Inorg. 	-
Q-index (Qi) of the result		6 7 (//	0

_

In collaboration

