Research (What	Parametric coefficient ontimization in the global electric circuit
is it about 2)	equation
UNN authors	Chernov A.V.
We find (The	For the problem of parametric optimization of the coefficient and the right-
result)	hand side of the linear global electric circuit equation, formulas for the first
	partial derivatives of an integral cost functional with respect to control
	parameters are obtained
Abstract	The problem of identification the unknown numerical parameters v_1 , v_2 in senior
	coefficient and the right-hand side of the linear differential equation
	$\partial A_{rr}(4, x) + A_{rr}(4, x) = \sqrt{rr}(4, x) = \sqrt{rr}(4, x)$
	$\frac{-\Delta \varphi(t,x) + 4\pi \operatorname{div} \left(O(x,v_1) \lor \varphi(t,x)\right) = 4\pi \operatorname{div} J (t,x,v_2)$
	is considered. The above equation is known as the global electric circuit equation (in
	the sense of electric fields distributed in the Earth's atmosphere, <i>thunderstorm cloud</i>
	for example). The unknown function is treated as a scalar electric potential ϕ , while
	$J^{ext}(t,x;v_2)$, as the volumetric density of external electric current. In practice, only
	certain parametric representations of the coefficient and the right-hand side are
	usually known, i.e., $\sigma = \sigma(x;v_1)$ and $J^{ext} = J^{ext}(t,x;v_2)$, where the parameters v_1 ,
	v_2 , are unknown. The problem of reconstructing the unknown parameters from
	observations can be represented (under certain conditions) as the minimization of an
	integral functional depending on φ , i.e., in fact, on the unknown parameters. To apply
	a numerical minimization method of the first order, one has to know the gradient of
	this function. Thus, the question arises of computing its partial derivatives with
	respect to v_1 , v_2 . The formulas for its calculation are obtained which contain the
	analytic solution of initial-boundary problem and conjugate one. The sufficient
	conditions are found for global (for all permissible set of v_1 , v_2) solvability of this
	problem.
L	L

 quartiles 1579 (2016). Chernov A.V. On a Majorant-Minorant Criterion for the Total Preservation of Global Solvability of Distributed Controlled Systems. Differential Equations. 52(1), 111–121 (2016). 	Q4
Q-index (Qi) of the result	1,75

In collaboration	Nizhnii Novgorod State Tech Univ, Nizhnii Novgorod, Russia

The equation for electric fields distributed in the Earth's atmosphere:

$$\frac{\partial}{\partial t}\Delta \varphi(t,x) + 4\pi \operatorname{div}\left(\sigma(x;v_1)\nabla \varphi(t;x)\right) = 4\pi \operatorname{div} J^{ext}(t,x;v_2)$$

and search the entering parameters by the results of observation (minimization of an integral functional depending on φ):

The cost functional in the parametric optimization problem:

$$J[v] = \int_0^T dt \int_{\Omega} F(t, x, \varphi[v](t, x), v) dx.$$