

Mathematics, Information Systems

Research (What is	Quantum bifurcation and localization in open systems		
it about?)			
UNN authors	Ivanchenko, M.V., Denisov, S., Laptyeva, T.V., Yusipov, I.I., Meyerov, I.B., Linio		
	A.V., Kozinov, E.A., Volokitin, V.D., Vershinina, O.S.		
We find (The	In open quantum system dissipation can drive a disordered system into a		
result)	steady state with tunable localization properties. This "dissipative		
	engineering" can create not pure but highly mixed state with desired		
	localization properties. Bifurcation in modulated systems is described with a		
	quantum trajectory method.		
Abstract	Localization by disorder is a fifty year old phenomenon, which is still posing new		
	puzzles and yielding new surprises. One of them refers to the case when the N-		
	dimensional quantum systems are open, i.e., they interact with their environments.		
	We develop the theory of this systems with the superior number of states (N>1000)		
	without the mean-field approximation but with a numerically exact realization of		
	the quantum trajectory method. The asymptotic states (quantum attractors) in that		
	system can be desired to be a tunable localization properties. Some "regular"		
	bifurcation revealed the types of triple equilibrium state, saddle-node, period		
	doubling and the analogue of dynamic chaos transition.		
	In a disorder-free Hamiltonian with a flat band, one can either obtain a dominating		
	localized asymptotic state or populate whole flat and/or dispersive bands, depending		
	on the value of the control parameter. In a disordered Anderson system, the		
	asymptotic state can be localized anywhere in the spectrum of the Hamiltonian. It		
	has demonstrated that the concept of dissipative Floquet maps provides an		
	operational way to identify quantum attractors and estimate the relaxation time		
	towards them.		

	Q-index (Qi) of the result	3.7
	states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method. Phys. Rev E. 96 : 053313 (2017).	
	M., Hanggi P., Denisov S. Computation of the asymptotic	
	quantum systems. EPL. 119 : 56001 (2017). 5. Volokitin V., Liniov A., Meyerov I., Hartmann M., Ivanchenko	Q1,Q2
	4. <i>Vershinina O.S., Tusipov I.I., Denisov S., Ivanchenko M.V.,</i> <i>Laptveva T.V.</i> Control of a single-particle localization in open	Q2
	role of interaction. New Journal of Physics. 19 : 083011 (2017).	02
	<i>P</i> Asymptotic Floquet states of open quantum systems: the	QI
	quantum means. Annalen der Physik. 529 : 1600402 (2017).	01
quartiles	Meyerov I.B., Denisov S.V. Classical bifurcation diagrams by	×1
2016-2017,	(2017). 2 Ivanchenko MV Kozinov F.A. Volokitin V.D. Liniov AV	01
articles	in open quantum systems. Phys. Rev. Lett. 118: 070402	
Representative	1. Tusipov I., Laptyeva I, Denisov S., Ivanchenko M. Localization	QI
Depresentative	1 Vusinou I. Lantuma T. Donisou S. Juanahanko M. Localization	01

	Jermany
Nanosyst Initiat Munich, Schellingstr 4, D-80799 Munich, G	Germany
Natl Univ Singapore, Singapore 117546, Singapore	

One-parameter bifurcation diagrams for the (a) classical and (b) quantum periodically modulated systems ($N = 10^3$). In both cases, stroboscopic expectation values of the number of particles in the first site were recorded during 2000 periods (after an equal transient time), and taken to produce color-coded histograms, with the maximal element normalized to one.

3D versions of the Poincaré–Husimi representation of the asymptotic states. Two panels corresponds to interaction strength growth. Bottom planes present the Poincaré sections of the corresponding classical attractors.