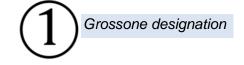

Research (What	Goal programming without weights problem	
is it about?)		
UNN authors	Sergeyev Ya.	
We find (The	It is shown that a multi-objective optimization problem can be	
result)	reduced to a new single-objective one by using a smart numerical	
	approach to working with infinities and infinitesimals without finding a set of multiple objective weights	
Abstract	Engineering applications often lead to optimization problems where several	
	objectives should be satisfied (goal programming tasks). An important class	
	of problems of this kind are <i>lexicographic multi-objective problems</i> where	
	the first objective is incomparably more important than the second one	
	which, in turn, is incomparably more important than the third one, etc. In	
	case each of the objectives is represented by a linear function under linear	
	constraints, Lexicographic Multi-Objective Linear Programming (<i>LMOLP</i>) problems are considered.	
	Traditional ways for <i>LMOLP</i> problems are to solve a sequence of single-	
	objective linear programming problems with variable constraints or to	
	transform a <i>LMOLP</i> into a single-objective problem by using a weighted	
	sum of the objectives. The first way is time consuming, in the second one,	
	it is difficult to find the weights and it is also time consuming at best.	
	We find that a smart application of infinitesimal weights allows one to construct a single-objective problem avoiding the necessity to determine	
	finite weights. In this approach, objectives can be ranked by successive powers of the new numeral <i>grossone</i> , which is defined as the infinite	
	integer being the number of elements of the natural numbers set. The equivalence between the original multi objective problem and the new	
	single-objective one is proved. A simplex-based algorithm working with finite and infinitesimal numbers is proposed and implemented. Results of	
	some numerical experiments are provided.	
	some numerical experiments are provided.	

Representative	1. Marco Cococcioni, Massimo Pappalard	o, Yaroslav D.	Q1
articles	Sergeyev. Lexicographic multi-obj	ective linear	
2017-2018,	programming using grossone methodolog		
quartiles	algorithm. Appl. Math & Comput. 318. 298	-311 (2018).	
Q-index (Qi) for the result		4	
		high blue	
In collaboration	University of Pisa, Pisa 1 - 56122, Italy		
	University of Pisa, Pisa 3 - 56127, Italy		

University of Pisa, Pisa 3 - 56127, Italy
University of Calabria, Rende87036, Italy

The simplest tasks of goal programming:



The first engineering application of goal programming, was the design and placement of the antennas employed on the second stage of the *Saturn V* rocket.

Max $\mathbf{c} \cdot \mathbf{x}$ s.t. { $\mathbf{x} \in \mathbb{R}^{n}$: $A\mathbf{x} = \mathbf{b}, \mathbf{x} > 0$ } where $\mathbf{c} = \sum_{i=1}^{r} \mathbf{c}^{i} M^{-i+1}$ Mathematic formulation of *LMOLP* task and the weights finding problem.

If the number of elements of the natural numbers set is defined as new numeral *grossone*...

1, 2, 3, 4, ... 666, ..., (1)

...then grossone-based formulation

Max **čx**

It does not involve any unknown.

s.t. { $\mathbf{x} \in \mathbb{R}^n$: $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0$ },

where $\tilde{\mathbf{c}}$ is a row-wise gross-vector having *n* gross-scalar components:

$$\mathbf{\tilde{c}} = \sum_{i=1}^{r} \mathbf{c}^{i} \mathbf{1}^{-i+1}$$
 gives the solution of *LMOLP* task.