Research (What	Angular superresolution of antenna array signals
is it about?)	
UNN authors	Ermolaev V., Flaksman A., Elokhin A., Kuptsov V.
We find (The	New (root) variant of the superresolution method of minimum
result)	polynomial for determining the number and the angular coordinates
	of the signal sources acting on the antenna array has been proposed.
	This variant has been shown to have the <i>maximum efficiency</i> in
	comparison with all known superresolution methods but it needs
	linear equidistant antenna arrays.
Abstract	The <i>superresolution</i> methods allow one to determine the angular
	coordinates of the closely located sources with the accuracy which
	significantly <i>exceeds</i> the Rayleigh angular-resolution limit that is equal to the enterna error <i>harm width</i> . Among all of them the root MUSIC
	(<i>MU</i>)tiple Signal Classification) method ensures a higher accuracy of
	estimating the angular coordinates. But it does not estimate the number of
	sources which is assumed to be known or pre-estimated by another way
	We propose the <i>root variant</i> of the superresolution method of <i>minimum</i>
	<i>polynomial of the correlation matrix</i> for estimating the number and
	angular coordinates of the closely located sources within the same
	calculation procedure.
	The method is based on estimating the degree and coefficients of the
	minimum polynomial of the sample correlation matrix of the input process
	in the array using the statistically grounded functional of the standard error
	and on constructing the matrix projector onto the noise subspace. The
	method ensures the direction finding of the sources by determining roots of
	the denominator of the reciprocal (pseudospectral) function and can be
	applied only for the <i>linear equidistant</i> antenna arrays.
	The cases of uncorrelated and correlated signal sources have been
	considered. The comparative simulation results for the cases of a short
	sample of the input process, when the number of samples is significantly smaller than the number of elements of the entering error, and the strongly
	sorrelated sources have been presented
	The proposed method has been shown to have the maximum efficiency
	compared with all known superresolution methods. It will be used in
	Advanced Driver-Assistance Systems – <i>ADAS</i> .
L	
Representative	1. Ermolaev V.T., Flaksman A.G., Elokhin A.V., Kuptsov V.V. Q3
articles	Minimal polynomial method for estimating parameters of
	signals reactived by an enternal error Accust $D_{\text{bys}} = 64(1)$

	(2018). Q-index (Qi) for the result	1.3
2017-2018, quartiles	 signals received by an antenna array. Acoust. Phys. 64(1). 83-90 (2018). <i>Ermolaev V.T., Flaksman A.G., Elokhin A.V., Kuptsov V.V.</i> Angular superresolution of the antenna-array signals using the root method of minimum polynomial of the correlation matrix. Radiophys & Quant.Electron. 61(3). 232-241 	Q4, Q4

In collaboration	_

