Research (What is	Quasistatic precursors of powerful laser pulses in crystals
it about?)	
UNN authors	Bakunov M.I., Maslov A.V., Tsarev M.V.
We find (The	It is found theoretically that an ultrashort laser pulse in an electro-optic
result)	crystal can produce a terahertz pulse with a quasistatic electromagnetic
	precursor propagating <i>ahead</i> of the pulse.
Abstract	Nowadays, extremely strong (exceeding 1 MV/cm) terahertz electric fields are of
	great interest. The demand for generating stronger terahertz pulses requires
	increasing the optical pump intensity. At high intensity, two-photon, or more
	generally multiphoton, absorption becomes an essential factor that can limit the
	optical-to-terahertz conversion efficiency. Multiphoton absorption leads not only to
	the depletion of the pump beam but also to the generation of free carriers that
	absorb terahertz waves. Thus, free-carrier generation is commonly considered as a
	detrimental effect for terahertz generation.
	We show that free-carrier generation can give rise to a much less trivial physical
	effect, compared to the free-carrier terahertz absorption, namely, to the generation
	of strong quasistatic electric and magnetic precursors ahead of the laser pulse. This
	effect cannot be accounted for by simply including the free-carrier contribution to
	the complex dielectric permittivity of the crystal. The mechanism of the effect is
	rather related to the nonstationarity of the free carriers. In particular, the newly born
	carriers are accelerated by the electric field that copropagates nonlinear
	polarization. The acceleration produces a burst of an electric current, which in turn
	generates quasistatic precursors ahead of the laser pulse.
	The nature of quasistatic precursors is different from the canonical Sommerfeld and
	Brinouin precursors, which are a linear propagation effect. They result from
	disintegration of an electromagnetic pulse in a dispersive medium and appear as
	oscillations propagating ahead of the main part of the pulse. Quasistatic precursors
	nave a nonoscinating character and originate from the ionization of a nonlinear
	(electro-optic) medium by a strong optical pulse.

Representative articles 2016-2017,	 Bakunov M.I., Maslov A.V., Tsarev M.V. Optically generated terahertz pulses with strong quasistatic precursors. Phys. Rev. A. 95: 063817 (2017). 	Q1,Q2
quartiles	Q-index (Qi) of the result	3.5

In collaboration	-

Physical Sciences 25