Research (What	Plasmon levitation			
is it about?)				
UNN authors	Maslov A.			
We find (The	It is predicted that the optical force induced by a <i>surface plasmon</i>			
result)	can form a stable equilibrium position for a resonant particle at a			
	finite distance from the surface. The levitated particle can be			
	efficiently <i>propelled</i> along the surface without touching it.			
Abstract	The possibility of a stable equilibrium (levitation) of small particle in			
	optical beam (in the maximum of electromagnetic field) due to the			
	gradient forces is known for a long time. Since in closed (metal or hollow			
	dielectric) waveguides the intrinsic maximum of field is formed, an			
	optical levitation is possible there as well.			
	At the first glance, for the open waveguide systems (metal surface for			
	example) levitation is impossible because the maximum of guided field			
	here is in the surface and the particle will be carried to it.			
	We show nevertheless that in the case of plasmon excitation and its			
	propagation along the metal surface levitation is possible in a certain band			
	of parameters (frequencies, particle sizes, electron concentration in metal			
	etc.). The holding former substantially resonant and The levitation affect			
	The notating forces are substantially resonant ones. The revitation effect			
	of wevelength hand size			
	It was shown that the particle can be reliably tranned at some distance			
	above the surface and efficiently propelled along the surface. The trapping			
	takes place at frequencies near the particle resonance. The particle			
	resonance can be away from the plasmon resonance and, therefore, the			
	plasmon absorption can be rather weak. The levitation without propulsion			
	can be realized by using two counter-propagating waves.			

Representative articles 2017-2018, quartiles	1. <i>Maslov A.V.</i> Levitation and propulsion of a Mie-reson particle by a surface plasmon. Optics Letts. 42 (17), 3 3330 (2017).	ance 327-	Q1
quartites	Q-index (Qi) for the r	esult	4
	high blu	е	
In collaboration	-		

Plasmons on metal surface.

