
Research (What is	Quasistatic precursors of powerful laser pulses in crystals
it about?)	
UNN authors	Bakunov M., Maslov A., Tsarev M.
We find (The	It is found theoretically that an ultrashort laser pulse in an electro-
result)	optic crystal can produce a terahertz pulse with a <i>quasistatic</i>
	electromagnetic precursor propagating <i>ahead</i> of the pulse.
Abstract	Nowadays, extremely strong (exceeding 1 MV/cm) terahertz electric
	fields are of great interest. The demand for generating stronger terahertz
	pulses requires increasing the optical pump intensity. At high intensity,
	two-photon, or more generally multiphoton, absorption becomes an
	essential factor that can limit the optical-to-terahertz conversion
	efficiency. Multiphoton absorption leads not only to the depletion of the
	pump beam but also to the generation of free carriers that absorb
	terahertz waves. Thus, free-carrier generation is commonly considered
	as a detrimental effect for terahertz generation. We show that free-carrier generation can give rise to a much less trivial
	physical effect, compared to the free-carrier terahertz absorption,
	namely, to the generation of strong quasistatic electric and magnetic
	precursors ahead of the laser pulse. This effect cannot be accounted for
	by simply including the free-carrier contribution to the complex
	dielectric permittivity of the crystal. The mechanism of the effect is
	rather related to the nonstationarity of the free carriers. In particular, the
	newly born <i>carriers are accelerated</i> by the electric field that
	copropagates nonlinear polarization. The acceleration produces a burst
	of an electric current, which in turn generates quasistatic precursors
	ahead of the laser pulse.
	The nature of quasistatic precursors is different from the canonical
	Sommerfeld and Brillouin precursors, which are a linear propagation
	effect. They result from disintegration of an electromagnetic pulse in a
	dispersive medium and appear as oscillations propagating ahead of the main part of the pulse. Quasistatic procursors have a <i>nonoscillating</i>
	main part of the pulse. Quasistatic precursors have a <i>nonoscillating</i> character and originate from the ionization of a nonlinear (electro-optic)
	medium by a strong optical pulse.
<u> </u>	I medium by a subing optical pulse.

Representative articles 2017-2018, guartiles	1. Bakunov M.I., Maslov A.V., Tsarev M.V. Optically generated terahertz pulses with strong quasistatic precursors. Phys. Rev. A. 95 : 063817 (2017).	Q1, Q2
quartites	Q-index (Qi) for the result	3.5
	medial blue	

_

In collaboration

