Research (What	Radiation of Josephson junction array		
is it about?)			
UNN authors	Pankratov A., Pankratova E., Shamporov V.		
We find (The	It is shown that parallel losephson junction array with a common		
result)	RC-load may be an efficient radiator in the certain frequency		
	hand. The current voltage, power and spectral characteristics of		
	this array are found		
A la atura at	Locarbon junction is an electronic device consisting of two		
Abstract	superconductors separated by a very thin layer of insulating material. If		
	superconductors separated by a very time layer of instituting material. If		
	frequency that is highly aligned with voltage changes. Since the		
	requency that is highly aligned with voltage changes. Since the		
	radiation power of a single Josephson junction is rather weak (does not available 10^{-8} W), there is motivation for developing synchronous emotion		
	of Josephson junctions with the sim to obtain a higher radiation power		
	The increasing interest in the losenhoon effect is nowedays associated		
	with its THz potential for heterodyne detection. A real application		
	needs frequency tunability that is associated with low O regimes. To		
	address this problem an RC-load must be placed at one end of the		
	array However, due to the distributed nature of a Josephson		
	transmission line the damping leads to a condition that not all		
	International conditions in the array are coupled equally to the load. Thus		
	we may lack of synchronism for practicable device		
	We consider a complex dynamics of <i>Iosephson junction array</i> defined		
	by its load in the presence of thermal poise. We argue that threshold		
	regime in radiation power and <i>high efficiency</i> can be observed in a		
	relatively simple parallel (ladder-type) array damped with RC-load. It		
	is demonstrated that proper matching suppresses the chaotic dynamics		
	of the system. The efficiency of radiation is found to be highest within		
	a limited frequency band. In this frequency band the spectral linewidth		
	agrees well with a double of the linewidth for a shuttle fluxon		
	oscillator, divided by a number of the oscillators in the array. When the		
	oscillations demonstrate strong amplitude modulation, the linewidth		
	increases roughly by a factor of five compared with theoretical		
	linewidth formula.		
	It is shown that by optimization of parameters the <i>efficiency of</i>		
	<i>radiator</i> (the ratio of radiated power to the power of constant current		
	pass over system) may be increased to 15%.		
	· - · · · ·		
Representative	1. Pankratov A.L., Pankratova E.V., Shamporov V. A., Q1		

Representative	1.		<i>umporov v. 1</i> 1.,	X1
articles		Shitov S. V. Oscillations in Josephson transmission		
2017-2018,	line stimulated by load in the presence of noise. Appl.			
quartiles	Phys. Letts. 110 : 112601 (2017).			
Q-index (Qi) for the result				4
			high blue	

In collaboration	Institute for Physics of Microstructures RAS, Nizhny Novgorod	
	<u>603950, Russia</u>	
	Nizhny Novgorod State Technical University, Nizhny Novgorod	
	603950, Russia	
	Kotelnikov Institute of Radio Engineering and Electronics RAS,	
	Moscow 125009, Russia	
	National University of Science and Technology MISiS, Moscow	
	119049, Russia	

